Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass.

Identifieur interne : 001E40 ( Main/Exploration ); précédent : 001E39; suivant : 001E41

Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass.

Auteurs : Shaoxun Yuan [République populaire de Chine] ; Bin Xu [République populaire de Chine] ; Jing Zhang [République populaire de Chine] ; Zheni Xie [République populaire de Chine] ; Qiang Cheng [République populaire de Chine] ; Zhimin Yang [République populaire de Chine] ; Qingsheng Cai [République populaire de Chine] ; Bingru Huang [États-Unis]

Source :

RBID : pubmed:25765300

Descripteurs français

English descriptors

Abstract

BACKGROUND

In recent years, dozens of Arabidopsis and rice CCCH-type zinc finger genes have been functionally studied, many of which confer important traits, such as abiotic and biotic stress tolerance, delayed leaf senescence and improved plant architecture. Switchgrass (Panicum virgatum) is an important bioenergy crop. Identification of agronomically important genes and/or loci is an important step for switchgrass molecular breeding. Annotating switchgrass CCCH genes using translational genomics methods will help further the goal of understanding switchgrass genetics and creating improved varieties.

RESULTS

Taking advantage of the publicly-available switchgrass genomic and transcriptomic databases, we carried out a comprehensive analysis of switchgrass CCCH genes (PvC3Hs). A total of 103 PvC3Hs were identified and divided into 21 clades according to phylogenetic analysis. Genes in the same clade shared similar gene structure and conserved motifs. Chromosomal location analysis showed that most of the duplicated PvC3H gene pairs are in homeologous chromosomes. Evolution analysis of 19 selected PvC3H pairs showed that 42.1% of them were under diversifying selection. Expression atlas of the 103 PvC3Hs in 21 different organs, tissues and developmental stages revealed genes with higher expression levels in lignified cells, vascular cells, or reproductive tissues/organs, suggesting the potential function of these genes in development. We also found that eight PvC3Hs in Clade-XIV were orthologous to ABA- or stress- responsive CCCH genes in Arabidopsis and rice with functions annotated. Promoter and qRT-PCR analyses of Clade-XIV PvC3Hs showed that these eight genes were all responsive to ABA and various stresses.

CONCLUSIONS

Genome-wide analysis of PvC3Hs confirmed the recent allopolyploidization event of tetraploid switchgrass from two closely-related diploid progenitors. The short time window after the polyploidization event allowed the existence of a large number of PvC3H genes with a high positive selection pressure onto them. The homeologous pairs of PvC3Hs may contribute to the heterosis of switchgrass and its wide adaptation in different ecological niches. Phylogenetic and gene expression analyses provide informative clues for discovering PvC3H genes in some functional categories. Particularly, eight PvC3Hs in Clade-XIV were found involved in stress responses. This information provides a foundation for functional studies of these genes in the future.


DOI: 10.1186/s12864-015-1328-4
PubMed: 25765300
PubMed Central: PMC4352264


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass.</title>
<author>
<name sortKey="Yuan, Shaoxun" sort="Yuan, Shaoxun" uniqKey="Yuan S" first="Shaoxun" last="Yuan">Shaoxun Yuan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 234435466@qq.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Bin" sort="Xu, Bin" uniqKey="Xu B" first="Bin" last="Xu">Bin Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. binxu@njau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 714167898@qq.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xie, Zheni" sort="Xie, Zheni" uniqKey="Xie Z" first="Zheni" last="Xie">Zheni Xie</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 1005835157@qq.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Qiang" sort="Cheng, Qiang" uniqKey="Cheng Q" first="Qiang" last="Cheng">Qiang Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, PR China. chengqiang@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zhimin" sort="Yang, Zhimin" uniqKey="Yang Z" first="Zhimin" last="Yang">Zhimin Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. nauyzm@njau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cai, Qingsheng" sort="Cai, Qingsheng" uniqKey="Cai Q" first="Qingsheng" last="Cai">Qingsheng Cai</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China. qscai@njau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Bingru" sort="Huang, Bingru" uniqKey="Huang B" first="Bingru" last="Huang">Bingru Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA. huang@aesop.rutgers.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901</wicri:regionArea>
<wicri:noRegion>08901</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25765300</idno>
<idno type="pmid">25765300</idno>
<idno type="doi">10.1186/s12864-015-1328-4</idno>
<idno type="pmc">PMC4352264</idno>
<idno type="wicri:Area/Main/Corpus">001D83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D83</idno>
<idno type="wicri:Area/Main/Curation">001D83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D83</idno>
<idno type="wicri:Area/Main/Exploration">001D83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass.</title>
<author>
<name sortKey="Yuan, Shaoxun" sort="Yuan, Shaoxun" uniqKey="Yuan S" first="Shaoxun" last="Yuan">Shaoxun Yuan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 234435466@qq.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Bin" sort="Xu, Bin" uniqKey="Xu B" first="Bin" last="Xu">Bin Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. binxu@njau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 714167898@qq.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xie, Zheni" sort="Xie, Zheni" uniqKey="Xie Z" first="Zheni" last="Xie">Zheni Xie</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 1005835157@qq.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Qiang" sort="Cheng, Qiang" uniqKey="Cheng Q" first="Qiang" last="Cheng">Qiang Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, PR China. chengqiang@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zhimin" sort="Yang, Zhimin" uniqKey="Yang Z" first="Zhimin" last="Yang">Zhimin Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. nauyzm@njau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cai, Qingsheng" sort="Cai, Qingsheng" uniqKey="Cai Q" first="Qingsheng" last="Cai">Qingsheng Cai</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China. qscai@njau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Science, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Bingru" sort="Huang, Bingru" uniqKey="Huang B" first="Bingru" last="Huang">Bingru Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA. huang@aesop.rutgers.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901</wicri:regionArea>
<wicri:noRegion>08901</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Plant (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Multigene Family (genetics)</term>
<term>Panicum (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Tetraploidy (MeSH)</term>
<term>Zinc Fingers (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chromosomes de plante (MeSH)</term>
<term>Doigts de zinc (génétique)</term>
<term>Famille multigénique (génétique)</term>
<term>Panicum (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tétraploïdie (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Multigene Family</term>
<term>Panicum</term>
<term>Zinc Fingers</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Doigts de zinc</term>
<term>Famille multigénique</term>
<term>Panicum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Chromosome Mapping</term>
<term>Chromosomes, Plant</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Annotation</term>
<term>Phylogeny</term>
<term>Tetraploidy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Annotation de séquence moléculaire</term>
<term>Cartographie chromosomique</term>
<term>Chromosomes de plante</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence d'acides aminés</term>
<term>Tétraploïdie</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>In recent years, dozens of Arabidopsis and rice CCCH-type zinc finger genes have been functionally studied, many of which confer important traits, such as abiotic and biotic stress tolerance, delayed leaf senescence and improved plant architecture. Switchgrass (Panicum virgatum) is an important bioenergy crop. Identification of agronomically important genes and/or loci is an important step for switchgrass molecular breeding. Annotating switchgrass CCCH genes using translational genomics methods will help further the goal of understanding switchgrass genetics and creating improved varieties.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Taking advantage of the publicly-available switchgrass genomic and transcriptomic databases, we carried out a comprehensive analysis of switchgrass CCCH genes (PvC3Hs). A total of 103 PvC3Hs were identified and divided into 21 clades according to phylogenetic analysis. Genes in the same clade shared similar gene structure and conserved motifs. Chromosomal location analysis showed that most of the duplicated PvC3H gene pairs are in homeologous chromosomes. Evolution analysis of 19 selected PvC3H pairs showed that 42.1% of them were under diversifying selection. Expression atlas of the 103 PvC3Hs in 21 different organs, tissues and developmental stages revealed genes with higher expression levels in lignified cells, vascular cells, or reproductive tissues/organs, suggesting the potential function of these genes in development. We also found that eight PvC3Hs in Clade-XIV were orthologous to ABA- or stress- responsive CCCH genes in Arabidopsis and rice with functions annotated. Promoter and qRT-PCR analyses of Clade-XIV PvC3Hs showed that these eight genes were all responsive to ABA and various stresses.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Genome-wide analysis of PvC3Hs confirmed the recent allopolyploidization event of tetraploid switchgrass from two closely-related diploid progenitors. The short time window after the polyploidization event allowed the existence of a large number of PvC3H genes with a high positive selection pressure onto them. The homeologous pairs of PvC3Hs may contribute to the heterosis of switchgrass and its wide adaptation in different ecological niches. Phylogenetic and gene expression analyses provide informative clues for discovering PvC3H genes in some functional categories. Particularly, eight PvC3Hs in Clade-XIV were found involved in stress responses. This information provides a foundation for functional studies of these genes in the future.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25765300</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass.</ArticleTitle>
<Pagination>
<MedlinePgn>129</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-015-1328-4</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">In recent years, dozens of Arabidopsis and rice CCCH-type zinc finger genes have been functionally studied, many of which confer important traits, such as abiotic and biotic stress tolerance, delayed leaf senescence and improved plant architecture. Switchgrass (Panicum virgatum) is an important bioenergy crop. Identification of agronomically important genes and/or loci is an important step for switchgrass molecular breeding. Annotating switchgrass CCCH genes using translational genomics methods will help further the goal of understanding switchgrass genetics and creating improved varieties.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Taking advantage of the publicly-available switchgrass genomic and transcriptomic databases, we carried out a comprehensive analysis of switchgrass CCCH genes (PvC3Hs). A total of 103 PvC3Hs were identified and divided into 21 clades according to phylogenetic analysis. Genes in the same clade shared similar gene structure and conserved motifs. Chromosomal location analysis showed that most of the duplicated PvC3H gene pairs are in homeologous chromosomes. Evolution analysis of 19 selected PvC3H pairs showed that 42.1% of them were under diversifying selection. Expression atlas of the 103 PvC3Hs in 21 different organs, tissues and developmental stages revealed genes with higher expression levels in lignified cells, vascular cells, or reproductive tissues/organs, suggesting the potential function of these genes in development. We also found that eight PvC3Hs in Clade-XIV were orthologous to ABA- or stress- responsive CCCH genes in Arabidopsis and rice with functions annotated. Promoter and qRT-PCR analyses of Clade-XIV PvC3Hs showed that these eight genes were all responsive to ABA and various stresses.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Genome-wide analysis of PvC3Hs confirmed the recent allopolyploidization event of tetraploid switchgrass from two closely-related diploid progenitors. The short time window after the polyploidization event allowed the existence of a large number of PvC3H genes with a high positive selection pressure onto them. The homeologous pairs of PvC3Hs may contribute to the heterosis of switchgrass and its wide adaptation in different ecological niches. Phylogenetic and gene expression analyses provide informative clues for discovering PvC3H genes in some functional categories. Particularly, eight PvC3Hs in Clade-XIV were found involved in stress responses. This information provides a foundation for functional studies of these genes in the future.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Shaoxun</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 234435466@qq.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. binxu@njau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 714167898@qq.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Zheni</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. 1005835157@qq.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, PR China. chengqiang@njfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Zhimin</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China. nauyzm@njau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cai</LastName>
<ForeName>Qingsheng</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China. qscai@njau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Bingru</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA. huang@aesop.rutgers.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008897" MajorTopicYN="N">Panicum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057891" MajorTopicYN="N">Tetraploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016335" MajorTopicYN="N">Zinc Fingers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25765300</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-015-1328-4</ArticleId>
<ArticleId IdType="pii">s12864-015-1328-4</ArticleId>
<ArticleId IdType="pmc">PMC4352264</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Feb;11(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Mar;125(3):1198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 22;276(25):23144-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Oct;13(10):2269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2002 Nov;30(Pt 6):945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12440952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):615-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Oct;14(10A):1916-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Oct;14(10A):1924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jan;6(1):33-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Jan;24(1):105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1376-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Aug;48(8):1148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2091-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Jan 27;9:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18221561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(1):62-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19402879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Jul;185(3):745-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20407132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jan;65(2):253-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Aug 09;30(18):3812-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Feb;158(2):876-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22158700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Apr;53(4):673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e33892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22511929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(4):e1002686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22570626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Jun 18;13:253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22708723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22792223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(1):160-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23289674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Mar;161(3):1202-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23296688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Aug;36(8):1507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Oct;32(10):1543-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23749175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jun 19;4:202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23802005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2014 Apr;84(6):621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24282069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24288371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 12;9(3):e91474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24621568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2014 Oct;289(5):855-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24820208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 Jul;39(4):783-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Mar;10(3):383-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9600884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yuan, Shaoxun" sort="Yuan, Shaoxun" uniqKey="Yuan S" first="Shaoxun" last="Yuan">Shaoxun Yuan</name>
</noRegion>
<name sortKey="Cai, Qingsheng" sort="Cai, Qingsheng" uniqKey="Cai Q" first="Qingsheng" last="Cai">Qingsheng Cai</name>
<name sortKey="Cheng, Qiang" sort="Cheng, Qiang" uniqKey="Cheng Q" first="Qiang" last="Cheng">Qiang Cheng</name>
<name sortKey="Xie, Zheni" sort="Xie, Zheni" uniqKey="Xie Z" first="Zheni" last="Xie">Zheni Xie</name>
<name sortKey="Xu, Bin" sort="Xu, Bin" uniqKey="Xu B" first="Bin" last="Xu">Bin Xu</name>
<name sortKey="Yang, Zhimin" sort="Yang, Zhimin" uniqKey="Yang Z" first="Zhimin" last="Yang">Zhimin Yang</name>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Huang, Bingru" sort="Huang, Bingru" uniqKey="Huang B" first="Bingru" last="Huang">Bingru Huang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25765300
   |texte=   Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25765300" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020